FEED TECHNO VISION 2025

Contaminación: un problema presente, pero ignorado

Antoniel Franco Trouw Nutrition - Global

Sobre mí

Nombre: Antoniel Franco, DVM, MSc. PhD*

Función: Procesamiento y calidad de la alimentación TCM

Ubicación: Canadá

Correo electrónico: antoniel.franco@selko.com

Teléfono: +1 (780) 218-3614

Un brasileño que vive en Canadá...

Familia e intereses

- Casado;
- 2 kids (a girl and a boy);
- Disfrute pasar tiempo en el patio y el garaje.

Experiencia

- 15+ años trabajando en la industria de piensos;
- Experiencia en control de calidad y procesamiento;
- Se utiliza para administrar fábricas de piensos completas y especializadas;
- Amplia experiencia en resolución de problemas y realización de ensayos.

Que es Calidad y Controle de Calidad?

- Calidad: La calidad de un producto es una combinación de garantía de seguridad e integridad que se ajusta a los estándares.
- **Aseguramiento de la calidad:** Se ocupa de las políticas, procedimientos y controles de procesos que producen un producto consistente.
- Control de calidad: Se ocupa de las mediciones de los procesos en planta que aseguran que los parámetros de calidad se cumplan durante la recepción, fabricación y entrega.

Ponto común de contaminación y puntos de entrada

Fuentes de Contaminación

La contaminación proviene de materias primas, superficies de equipos, exposición ambiental y actividad humana en las plantas de alimentos balanceados.

Contaminantes Comunes

Mohos, micotoxinas, *Salmonella*, *E. coli* y metales pesados son contaminantes frecuentes que comprometen la seguridad del alimento.

Riesgos Ambientales y de Higiene

La humedad, los cambios de temperatura, las plagas y las malas prácticas de higiene aumentan el riesgo de contaminación en las plantas.

Medidas de Control e Inspección

El muestreo regular, las pruebas microbiológicas y las inspecciones en puntos clave ayudan a detectar y reducir la contaminación.

Riscos de contaminación

Físicos

- Metales
- Piedras, etc.

Químicos

- Micotoxinas**
- Medicaciones, etc.

Biológicos

- Salmonella**
- ASF/Avian Flu, etc.

Micotoxinas: que son?

- Metabolitos secundarios de bajo peso molecular producidos por ciertos géneros de hongos filamentosos -> Hongos en Stress.
- Se han identificado más de 600 tipos de micotoxinas
- Micotoxinas pueden ser tóxicas en bajas concentraciones
 - PPB (µg/kg) o PPM (mg/kg)
- Todas las micotoxinas san estables a los procesos de producción de alimento
- El impacto de las micotoxinas en los animales depende de la toxicidad, biodisponibilidad, dosis y tiempo de exposición, especie, linaje, edad, sexo, condiciones ambientales e interacción con otros patógenos y micotoxinas.

Ocurrencia de las micotoxinas

Micotoxinas de campo

Fumonisina (FUM) Zearalenona (ZEN) Deoxinivalenol (DON) Toxina T-2 (T-2)

Ergot

Aflatoxina (AFLA) Ocratoxina (OTA)

Micotoxinas de almacenamiento

Aspergillus spp.

Penicillium spp.

Ocratoxina (OTA)

Factores que afectan la aparición de hongos y micotoxinas en la cadena alimentaria

Factores biológicos

Cultivo susceptible
Plantación directa vs
automatizada
Aplicación de fungicidas
Daños (insectos o pájaros)

Factores ambientales

Temperatura Humedad

Almacenamiento

Temperatura
Humedad
Actividad del agua
Hongos detección

Cosecha

Madurez del cultivo Temperatura Humedad Hongos detección

Hongos detección

Micotoxinas = Riesgo

Maíz 1 Maíz 2 Maíz 3

Concentración Grano vs Polvo

Nombre de la Muestra	Contaminación por DON en Polvo (µg/kg × 10³)	Determinación Directa en Muestra de Grano(µg/kg × 10³)
Camión 5 B	1.2 ± 0.4	0.2 ± 0.1
Camión 6 B	5.2 ± 1.3	0.4 ± 0.2
Camión 7 B	2.6 ± 0.7	(-)
Camión 11 B	0.09 ± 0.03	(-)
Camión 19 B	6.6 ± 1.5	0.3 ± 0.1

Como reducir el riesgo de hongos

- El contenido de humedad de los granos no debe superar el 13%.
- La actividad del agua en materias primas, piensos y alimentos terminados debe mantenerse por debajo de **0.8**.
- <u>Utilizar Ácidos orgánicos para proteger los granos y reducir el</u> <u>crecimiento de hongos y producción de toxinas.</u>

Contaminación cruzada

"La contaminación cruzada ocurre cuando un producto entra en contacto con otro no deseado durante la producción, ya sea por ingredientes, insumos, superficies o ambientes."

Cuidados Esenciales

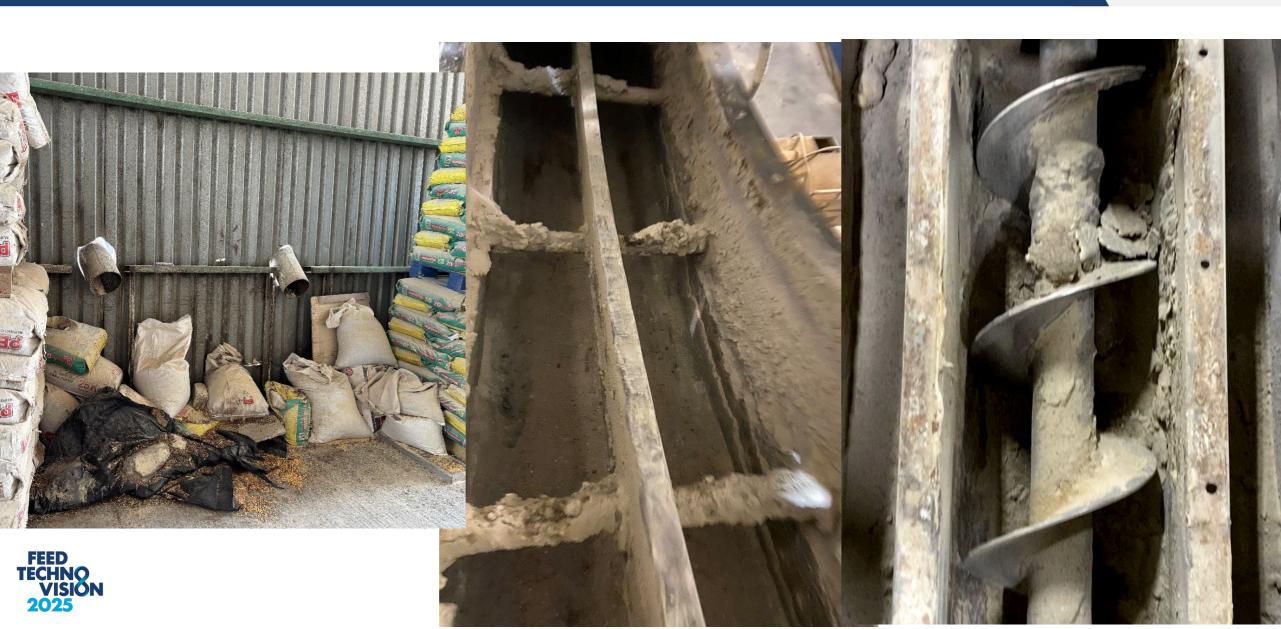
1.Establecer una secuencia de producción y transporte que evite la contaminación cruzada.

2.Realizar limpiezas de línea cuando sea necesario.

Contaminación cruzada en plantas de alimentos

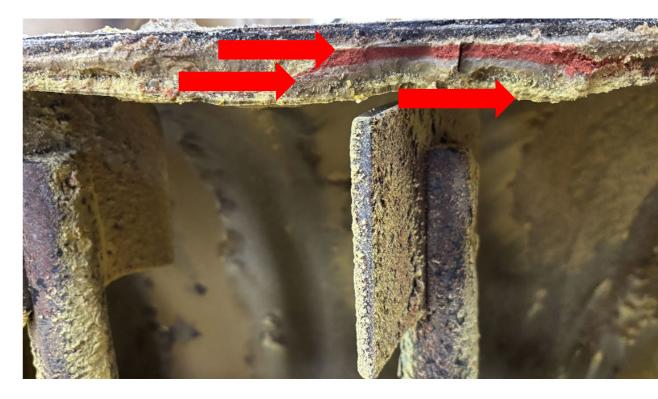
Causas en plantas de alimento:

- Arrastre: residuos que permanecen en mezcladoras, transportadores, elevadores o silos.
- Polvo y finos: dispersión en el aire o posición en equipos.
- Secuenciación inadecuada: producir alimento medicado antes que no medicado.
- Diseño/limpieza deficiente de equipos.


Riesgos:

- Exposición accidental de animales sanos a medicamentos.
- Desarrollo de resistencia antimicrobiana.
- Problemas de inocuidad alimentaria (residuos de fármacos en carne, leche, huevos).

Contaminacion cruzada



Contaminación cruzada

Controle específico para medicamentos

- Medidas de prevención:
 - Secuenciación de producción: elaborar primero alimento no medicado, luego medicado.
 - **Procedimientos de purga**: pasar un material inerte (ej. maíz molido) para limpiar líneas después de alimento medicado.
 - **Limpieza adecuada de equipos**: extracción de polvo, aspirado, eliminación de residuos.
 - Líneas/equipos dedicados para medicamentos de alto riesgo.
 - Pruebas y monitoreo: verificación de residuos para cumplir con normas.
 - **Documentación y capacitación**: concientización del personal en el manejo de medicamentos.

Resultado:

Minimiza el riesgo de residuos no intencionados, protege la salud animal y garantiza la inocuidad alimentaria.

Descripción general de Salmonella

""**Agua y temperatura = bacteria segura**"" Por Alejandro Gonzales

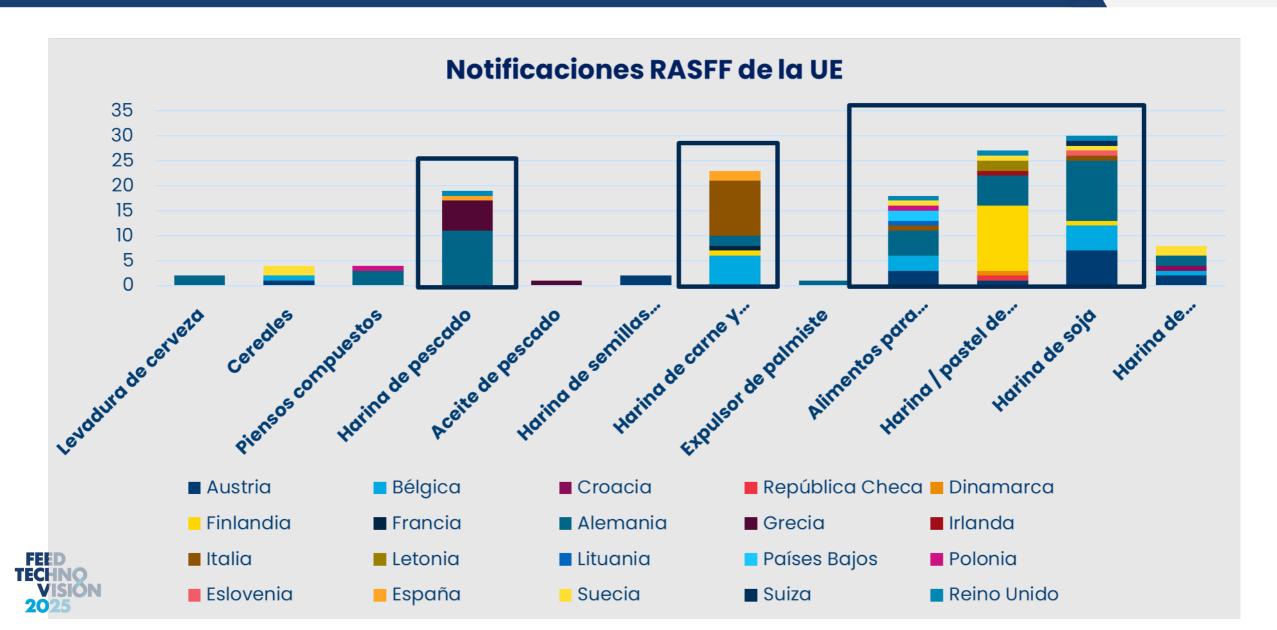
Visión general:

- La salmonela es una bacteria gram negativa
- Conocido por su capacidad para persistir en diversos entornos y contaminar piensos y productos alimenticios.

Sustratos de crecimiento preferidos:

- Materiales ricos en proteínas, especialmente:
 - Subproductos de la extracción de aceite vegetal (per ejemplo, harina de soja, levaduras)
 - **Subproductos animales** (por ejemplo, harina de carne y huesos)

Condiciones de crecimiento:

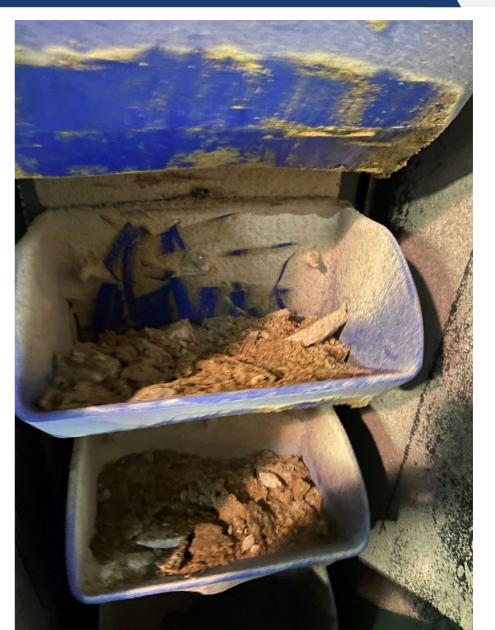

- Temperatura óptima: 7 45 °C
- Rango de pH óptimo: 4.0 9.0

Prevalencia de salmonela en los ingredientes

Transporte de ingredientes

- El sistema de transporte generalmente se descuida, una vez que está cerrado la mayor parte del tiempo y es difícil de alcanzar
- Tiene el mayor riesgo de acumulación de residuos, debido a la falta de limpieza

Recepcion de granos



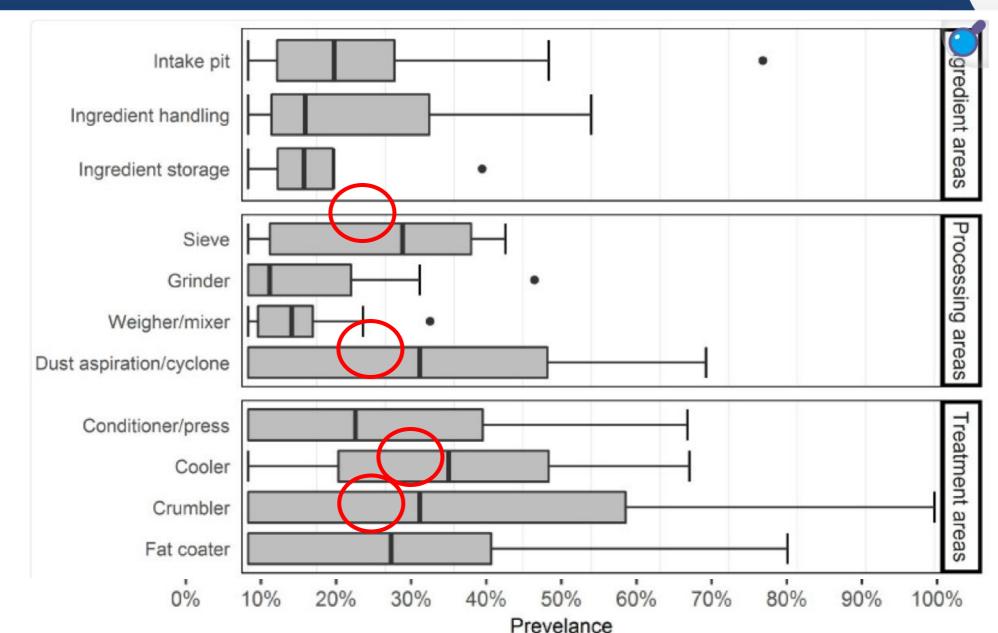
Transportadores

Transportadores

Tratamiento térmico del alimento

- La peletización con vapor es una herramienta eficaz para reducir patógenos como Salmonella.
- Riesgos: Mantenimiento deficiente o temperaturas de acondicionamiento inadecuadas comprometen la eficacia.
- **Recomendación**: Mantener la peletizadora en buen estado y asegurar temperaturas óptimas para mejorar la higiene del pienso.

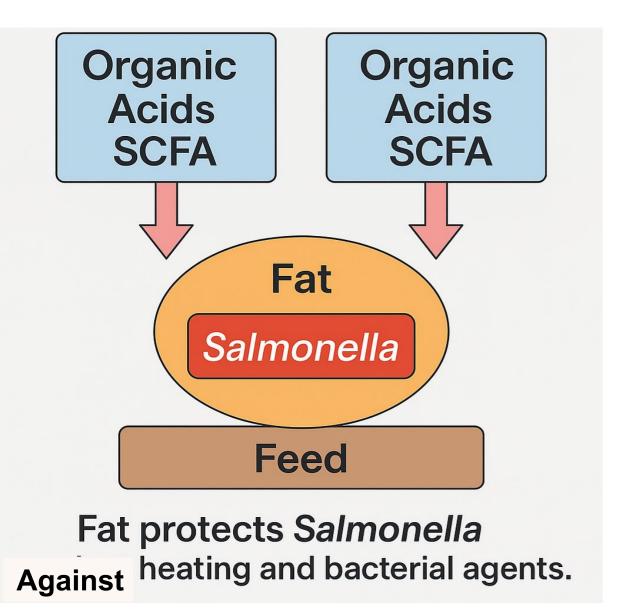
Acondicionamiento



FEED TECHNO VISION 2025

Prevalencia de la fábrica de piensos

Prevalencia en la fábrica de piensos (%)



Equipo	2013	2014
Ascensor y pie de ascensor	0	0
Transportador horizontal	0	2.6
Silos de expedición	12.2	18.8
Trituradora	5.9	7.1
Exhaustor	*	0
Acondicionador	*	0
Prensa	0.7	1.8
Enfriador	15.4	11.9

Modo de acción Ácidos orgánicos

Fysal = action of detergent on fats + organic acids kill Salmonella Fat Salmonella **Detergent** Feed **Organic Acids**

Programas de higiene y prevención

Protocolos de Higiene

Limpieza, control de polvo y buen diseño estructural previenen la contaminación.

Tratamientos Químicos

Ácidos orgánicos reducen la carga microbiana y evitan recontaminación.

Gestión de Humedad y Equipos

Control de humedad y mantenimiento regular mejoran la calidad del pellet.

• Capacitación en Bioseguridad

Formación en acceso restringido y desinfección fortalece el control sanitario.

