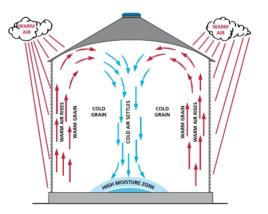


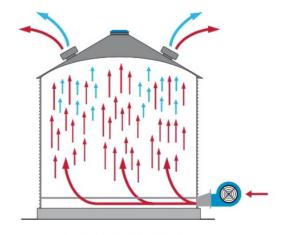
¿Que es la merma?

- Diferencia entre el peso de los ingredientes que ingresan y el peso del alimento terminado que sale de la planta de balanceados
 - Representa la pérdida de peso no contabilizada
- Ocurre durante: almacenamiento, transferencia y fabricación de los alimentos
- Se expresa como % de la producción total

$$\text{Merma (\%)} = \frac{\text{Peso de ingredientes recibidos} - \text{Peso de alimento terminado despachado}}{\text{Peso de ingredientes recibidos}} \times 100$$

$$\text{Merma (\%)} = \frac{1,000 - 990}{1,000} \times 100 = 1\%$$


- Pérdida de humedad
 - Almacenamiento, molienda y enfriamiento
- Polvo y finos
 - Limpieza del grano
 - Generados durante la recepción, molienda y transferencia
 - Sistemas de aspiración deficientes
- Pérdidas por deterioro y manejo
 - Fugas en el equipo
 - Equipos de transferencia deficientes
 - Desgaste en transportadores, fugas en elevadores o en las transiciones, etc.



Recibo de Ingredientes y Almacenamiento

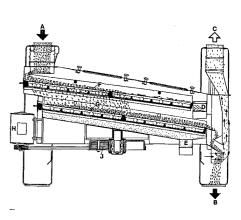
- El grano contiene:
 - Agua estructural (interior)
 - Agua superficial (exterior)
- Post-cosecha: el grano sigue equilibrando humedad
- Aireación:
 - Ayuda a controlar temperatura y previene deterioro
- La aireación se debe realizar cuando:
 - El grano se va a almacenar más de 2 meses
 - Temperatura del grano > 32°C
 - Temperatura ambiental 5°C menor que la del grano
 - Humedad relativa: < 80%

WITHOUT AN AERATION SYSTEM

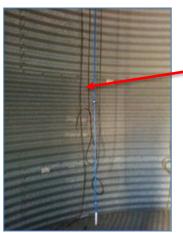
WITH AN AERATION SYSTEM

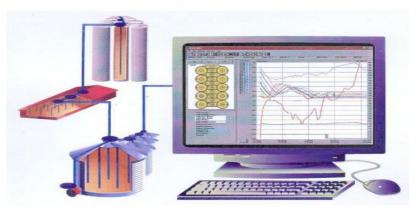
Almacenamiento – Perdidas por respiración

- Granos = organismos vivos post-cosecha
- Respiración: consume O₂ → libera CO₂, H₂O y calor
- Factores que aumentan la respiración:
 - Humedad >14–15% (maíz), >13% (soya)
 - ↑10°C → tasa metabólica ×2 (efecto Q₁₀)
 - ↑ Tiempo de almacenamiento → ↑ pérdidas
 - Insectos y microorganismos → más daño y pérdidas



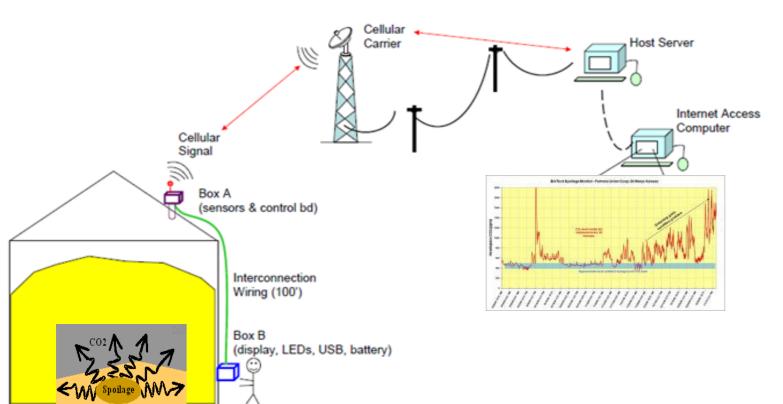
- Limpiar el grano antes del almacenamiento:
 - Eliminar granos partidos y finos que respiran más rápido y atraen insectos



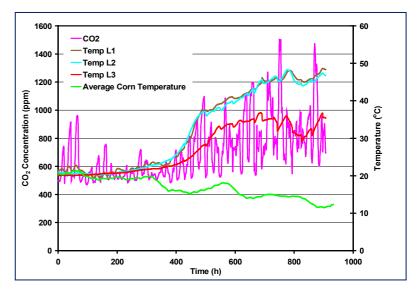

Monitorear la temperatura y humedad del grano en tiempo real

- El incremento en la temperatura es un buen indicador de:
 - Incremento en la actividad de plagas
 - Crecimiento de moho
 - Malas técnicas de aireación

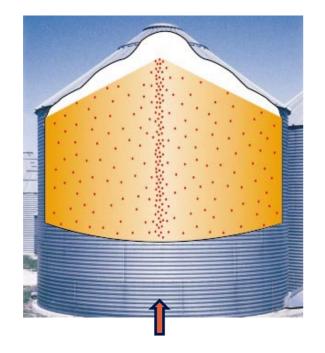
Los nuevos cables de temperatura también pueden medir humedad

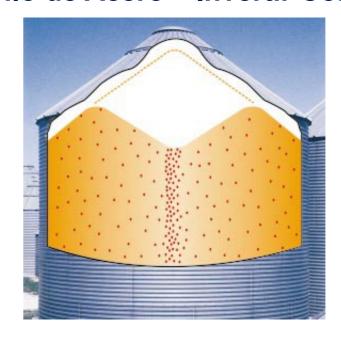

Desventaja:

Los termopares solo pueden detectar el aumento de temperatura dentro de un radio de 1 a 1.5 metros desde su ubicación.



Monitorear CO₂ del grano en tiempo real

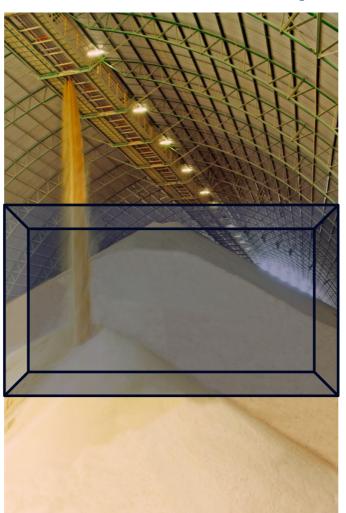



Reducir finos en el centro del silo

Silo de Acero – Columna Central

Incremento en la temperatura

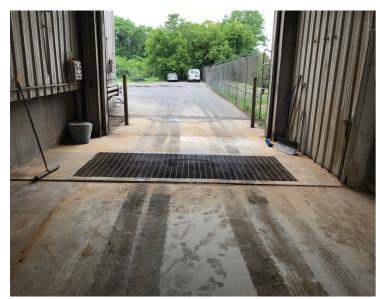
Silo de Acero - Invertir Cono



Usar bodegas planas con más de un compartimiento

Perdidas por mal manejo

- Fosas de recepción
 - Las fosas muy profundas más polvo
- Equipo de transporte
 - Más transferencias aumentan el polvo, los finos y los granos partidos
 - Mala limpieza: el grano derramado puede contaminarse y volverse inutilizable
 - Transiciones post-elevadores: el grano es abrasivo
- Operaciones de carga
 - Alimento derramado = más merma



Material residual

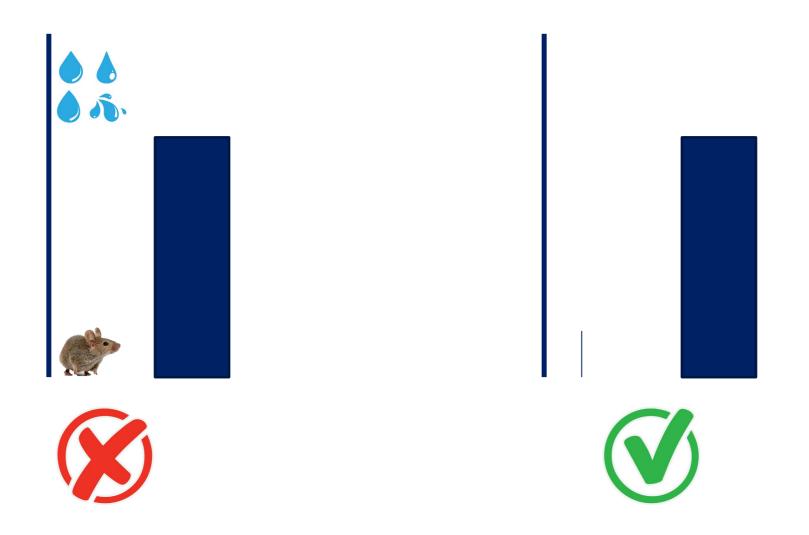
• Alimento e ingredientes dejados en silos, mezcladora, líneas de peletizado, equipo de transferencias, etc.

Insectos

- Gorgojos y barrenadores → consumen granos
- Aumentan la actividad biológica
 - Más migración de humedad
 - Mayor riesgo de deterioro
- Generan finos → menor calidad + limpieza adicional

Roedores y Aves

- Ratas, ratones y aves consumen el grano y el alimento terminado.
 - Orina y excrementos obligan a desechar ingredientes y alimento.
 - Daños en los sacos aumentan las pérdidas por derrames.



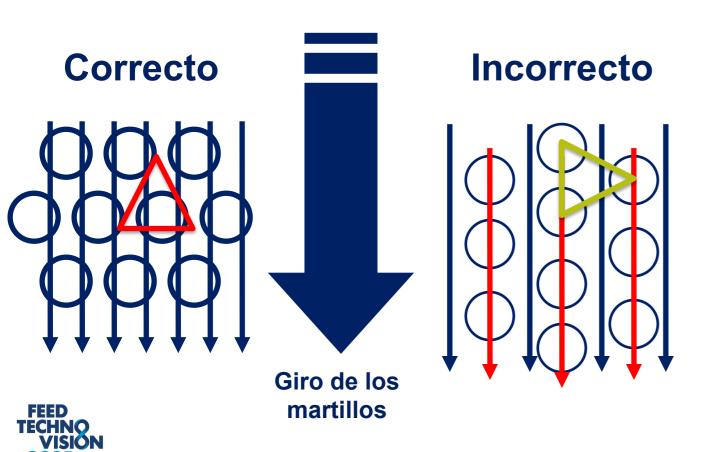
Manejo de ingredientes y productos finalizado en las bodegas

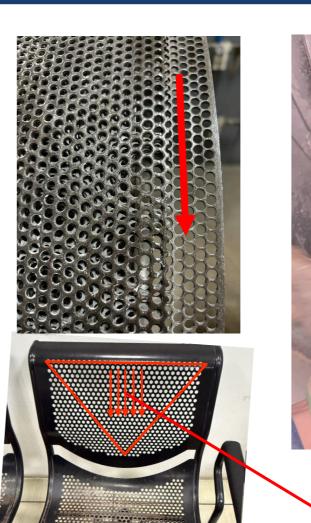
Control de plagas

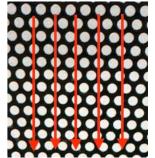
- Control de aves y roedores
 - Empleados con licencia
 - Empresas de control de plagas
- Contratista de control de plagas
 - Información de seguridad sobre los productos
 - Acompañar al contratista en cada visita mensual

Perdidas de humedad durante la molienda

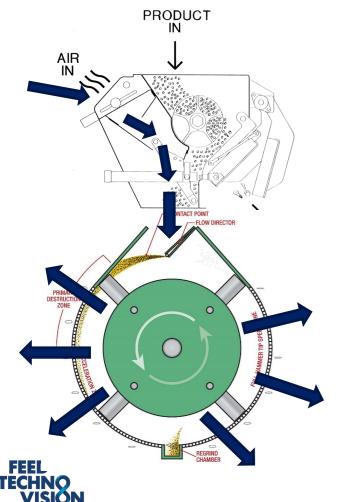
- Un total de 10 cargas separadas de tractocamiones con maíz entero
- Cada carga:
 - Muestreada
 - Analizada
 - Descargada
 - Molida
 - Re-analizada individualmente


Muestra	Humedad		Doudide
	Antes, %	Después, %	- Perdida
1	16.90%	14.93%	1.97%
2	14.00%	13.04%	0.96%
3	15.10%	14.08%	1.02%
4	14.10%	13.38%	0.72%
5	15.30%	14.63%	0.67%
6	14.90%	13.71%	1.19%
7	15.10%	14.21%	0.89%
8	13.60%	13.13%	0.47%
9	16.10%	14.77%	1.33%
10	13.79%	13.01%	0.78%
Promedio	14.89%	13.89%	1.00%



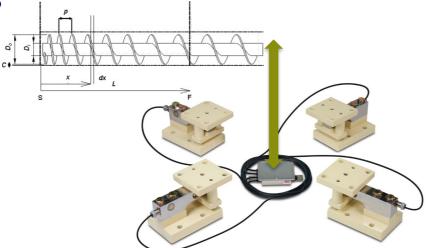

Perdidas de humedad durante la molienda

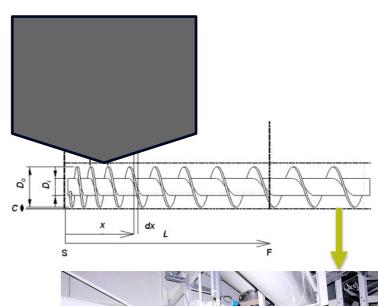
Escolonamiento



Aspiración Durante la Molienda

- La aspiración: extrae producto molido de la cámara de molienda
 - Mayor aspiración → molienda más gruesa
 - Menor aspiración → molienda más fina
- Requerimientos de aspiración = 1.25–1.5 × área de la criba
 - Ejemplo (HM44-48, 5,760 in²):
 - Molienda gruesa (1.25): 7,200 CFM
 - Molienda fina (1.5): 8,640 CFM

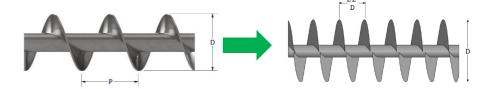



Pesado de Ingredientes

- Errores de medición o de básculas
 - Inexactitudes en las básculas de pesaje o en las básculas de camiones
 - Tiempo de espera en el pesaje muy cortos

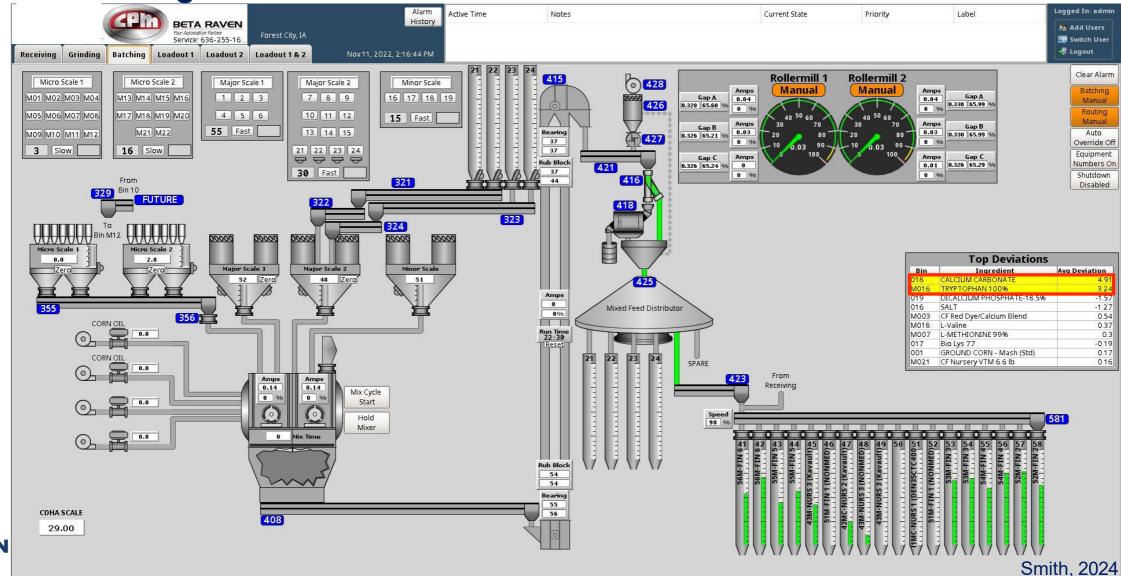
Raseras vs. tornillos para pesaje de

ingredientes



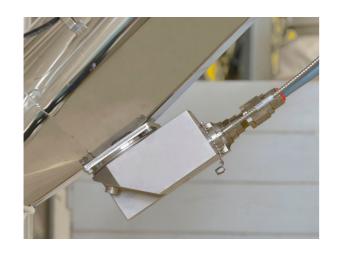
Pesado de Ingredientes

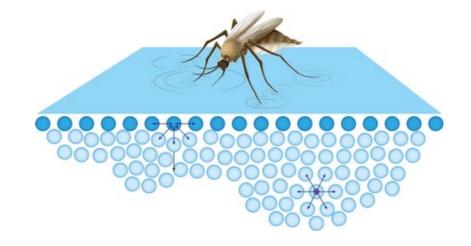
Ingrediente	Target	Actual	Deviation
Betania	7.20	7.186	-0.194
Lisina	35.70	35.40	-0.840
Carbonato de calcio	49.68	70.00	40.902
Sal	39.78	40.40	1.559
Gluten de maíz	540.12	504.00	-6.67
Grasa/aceite	193.38	196.96	1.850
S-carb	19.98	19.98	0.000
Maiz	6,317.00	6,282.00	-0.554
Harina de soya	3,995.00	3,969.00	-0.649
DL-metionina	43.32	43.63	0.693
Enzima	2.70	2.74	1.481
Premezcla mineral	8.50	8.58	0.941
Valina	10.98	11.24	2.368
Premezcla Vitaminas	6.00	6.02	0.333
Treonina	13.56	13.74	1.327

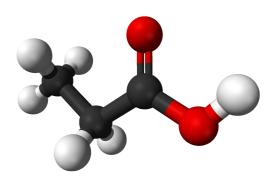


- Se están utilizando sinfines grandes para pesar ingredientes densos
 - Verificar el paso del transportador de tornillo
 - Verificar la velocidad del transportador
- El sistema de automatización está permitiendo una mayor variación entre los pesos reales y teóricos.

Pesado de Ingredientes – Gráfico de desviación

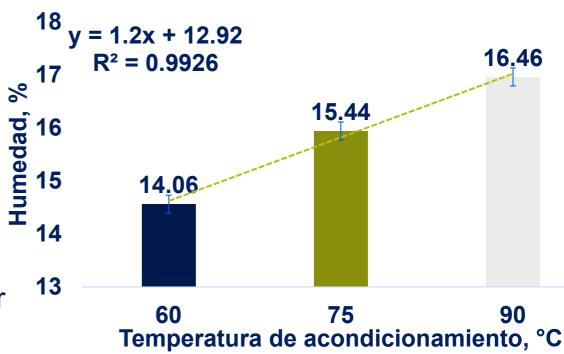






Sensores de Humedad

- Control de humedad en el alimento
 - Sensores de humedad en la mezcladora
 - Miden la cantidad de humedad del alimento en harina
 - Ajustan el nivel antes de entrar al acondicionador



Acondicionamiento

Adición de Humedad

- El vapor adiciona humedad y calor
- Objetivos:
 - Gelatinización de almidones
 - Gelificación de proteínas
 - Mejora el peletizado
- Se debe balancear:
 - Presión de vapor
 - Tiempo de retención en el acondicionador
 - Temperatura de acondicionamiento

Por cada aumento de 27°F (15°C) en la temperatura de acondicionamiento, hay un incremento del 1% en la humedad

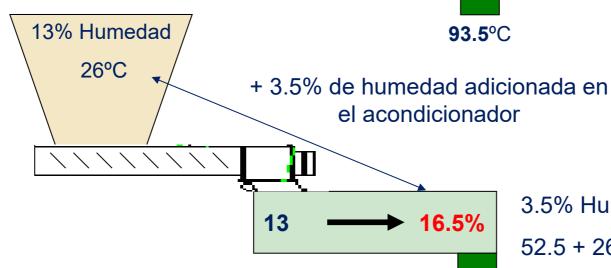
Acondicionamiento

Condiciones iniciales:

12% Humedad

26°C

16.5% Humedad = Punto de atasque (este ejemplo)


+ 4.5% de humedad adicionada en el acondicionador

16.5% 12%-

4.5% humedad = 67.5°C

 $26 + 67.6^{\circ}C = 93.5^{\circ}C$

Harina con 1% más de humedad

78.5°C

3.5% Humedad = 52.5°C

$$52.5 + 26^{\circ}C = 78.5^{\circ}C$$

Remoción de humedad

- El propósito del enfriamiento/secado es eliminar la humedad y el calor añadidos (por vapor) y generados por fricción durante el proceso de acondicionamiento y peletizado
- Eliminar la humedad después del proceso de peletizado
 - Los pellets humedos o con exceso de humedad:
 - Se deterioran mas rápido
 - Peor conversión alimenticia
 - Diluyen la densidad nutricional del alimento
 - Aumentan los costos de transporte
- Eliminar el calor después del proceso de peletizado

Emisiones de polvo

- Eficiencia del ciclón en sistemas de enfriamiento de pellets
 - Eficiencia: 97.4–98.0% (ciclones de alta eficiencia)
- Guías AP-42 PM10:
 - 0.075 libras de emisiones por tonelada/hora de peletizado
- Ejemplo:
 - Línea de 50 toneladas/hora → 3.75 libras/hora de emisiones
- Estimación de emisiones anuales
 - Carga del sistema: 5,000 toneladas/semana
 - Emisiones anuales: 9.75 toneladas/año x \$500/tonelada = \$4,875.00
 - Supuestos:
 - Sin obstrucciones en el ciclón
 - Sin fallas en los ventiladores
 - Sin bloqueos en los ductos

Requerimientos

Aire

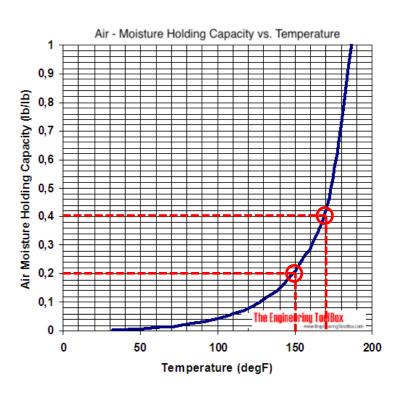
- Transporta el calor y la humedad
- Actúa en la superficie de los pellets

Calor

- Requerido para eliminar la humedad
- El aire caliente se expande, reduciendo la humedad relativa y aumentando la capacidad de secado del aire

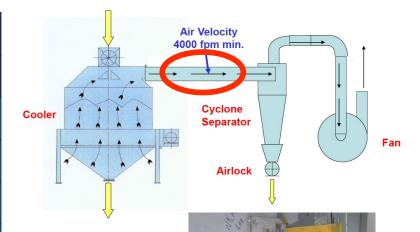
Tiempo

- Requerido para lograr el calor y la eliminación de humedad óptimos en la superficie del pellet
- Normalmente se necesitan 7.5 a 8.5 minutos para un enfriamiento/secado adecuados



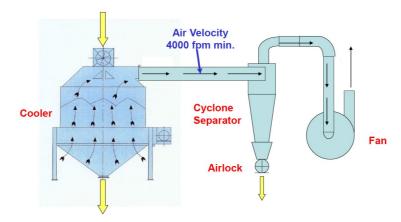
Tomporeture1	Humedad ²	Acción Correctiva	
Temperatura ¹		Flujo de Aire	Profundidad de cama
OK	High		^
High	High	↑	^
OK	Low	↑	1
Low	High	l l	^
Low	Low		_

Adaptado de Fairchild, 2015 (IGP Institute, Curso Básico de Fabricación de Alimentos Balanceados, Manhattan, KS)

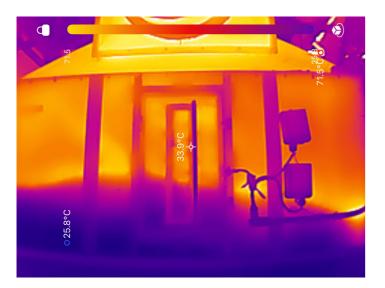

La temperatura del pellet debe ser <6°C por encima de la <u>temperatura alrededor del enfriador</u> El contenido de humedad debe ser ±0.5% de la humedad original del alimento en harina

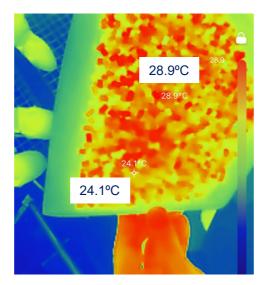
Tommoveture1	Humedad ²	Acción Correctiva	
remperatura.		Flujo de Aire	Profundidad de cama
OK	High		^
High	High	1	^
OK	Low	1	↓
Low	High	Į.	^
Low	Low		_

Adaptado de Fairchild, 2015 (IGP Institute, Curso Básico de Fabricación de Alimentos Balanceados, Manhattan, KS)


La temperatura del pellet debe ser <6°C por encima de la <u>temperatura alrededor del enfriador</u> El contenido de humedad debe ser ±0.5% de la humedad original del alimento en harina

Alta humedad – Subir el espesor de la cama 5 cm Baja humedad – Subir el fujo de aire bajando la temperatura del aire en el ducto de salida


Condición	Escenario		
Condicion	1	2	3
Humedad de la harina - mezcladora,%	12.5	12.5	12.5
Humedad de la harina - acondicionador,%	16.25	17.0	16.0
Temperatura ambiente, °C	28	28	33
Humedad del pellet, %	12.25	13.5	11.5
Temperatura del pellet, °C	33	33	37
¿Corrección?			



Selko

Consideraciones

La acumulación de partículas reduce el flujo de aire

Selko

Sensores

Temperatura

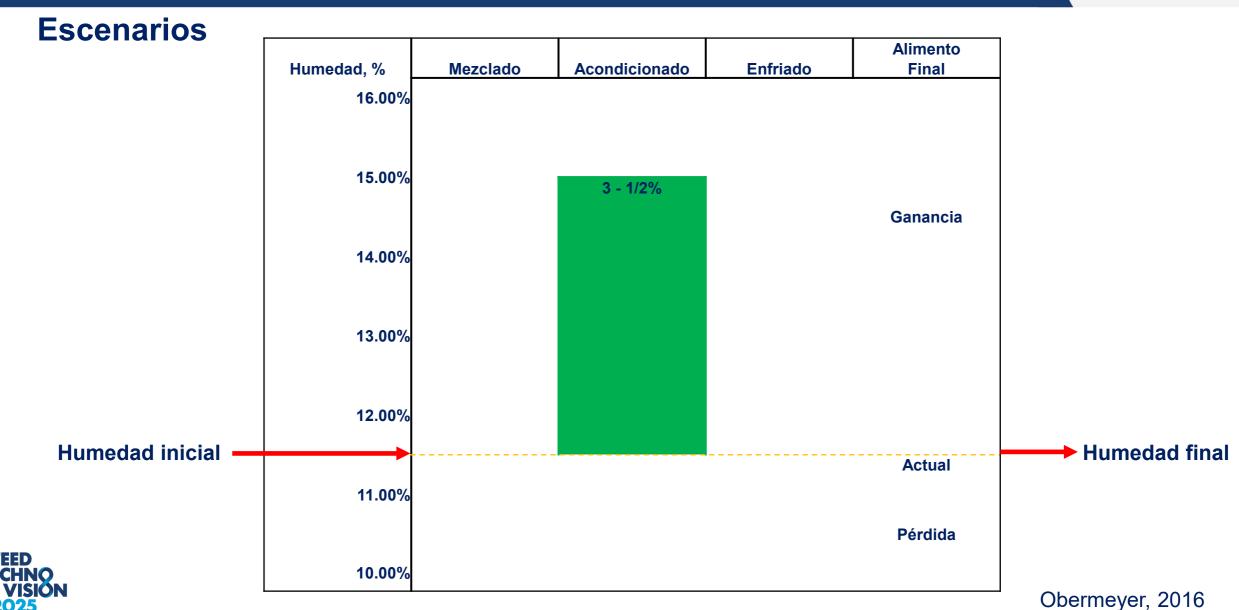
Sensores como herramienta de manejo

Humedad de los pellets

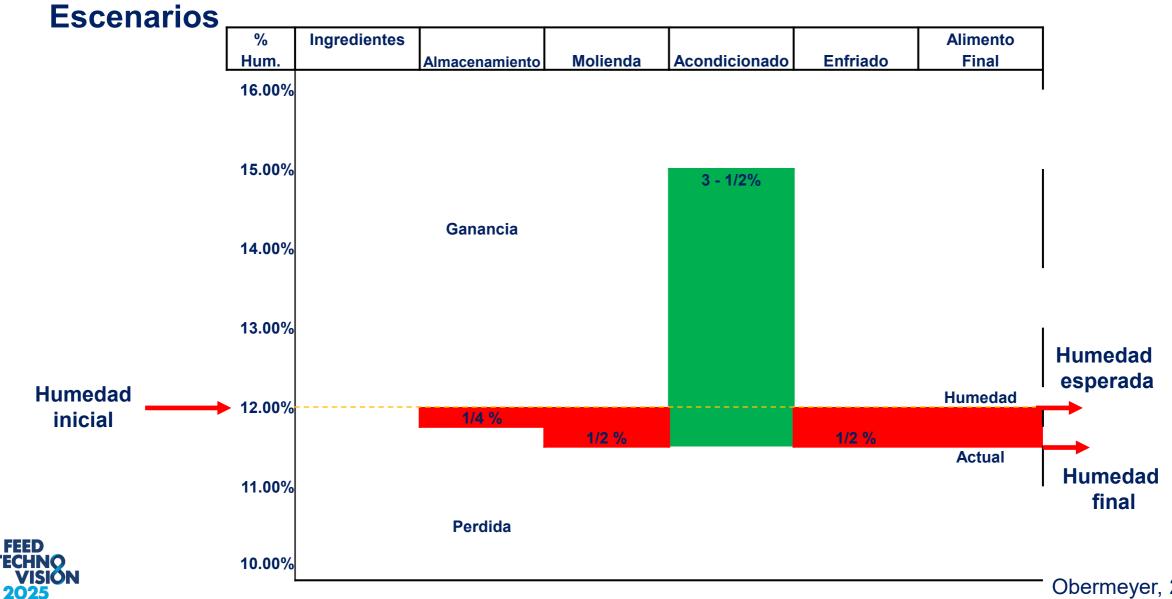
Temperatura de los pellets

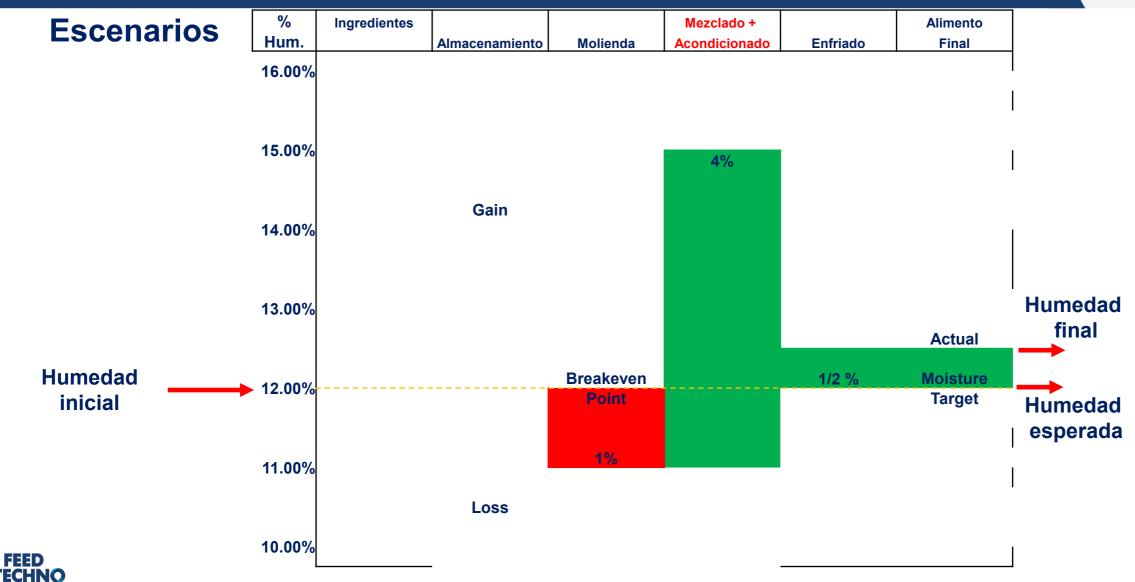
Cambios en el flujo del aire

Temperatura y humedad óptimas en el producto terminado



Temperatura


Manejo de la humedad


Manejo de la humedad

Manejo de la humedad

Enfriado y secado

Perdida de humedad – Impacto Economico

Pérdida de humedad – aumenta la merma

- Cada 1.00% de pérdida en el contenido de humedad desde las materias primas compradas hasta el alimento terminado es un 1.00% de merma
- 1,000 toneladas/semana x 1.00% = 10 toneladas de producto perdido x \$500/ton = \$5,000/semana

Estrategias de prevención de la merma

Sanidad

Limpiar los derrames tan pronto como ocurran

Controles estructurales

Reparar fugas en el equipo de transporte y transferencia

Fumigación

Seguir buenas prácticas de fumigación

Aireación y secado

Mantener el grano por debajo del 13-14% de humedad y menos de 32°C

Barreras físicas

- Cubrir las áreas de recepción y despacho
- Usar sistemas automáticos de recuperación de derrames

Conclusiones

¿Por qué importa la merma?

Impacto económico:

 Una merma del 0.5 al 1.0% puede generar pérdidas financieras significativas

Control de inventarios

- Las plantas de alimento bien gestionadas buscan mantener la merma por debajo del 0.5% de la producción total
- Cualquier valor por encima del 1% amerita una revisión de la calibración del equipo, control de procesos y prácticas de manejo

Es importante controlar la merma para:

Reducir de pérdidas económicas

- La merma representa materia prima perdida que no genera valor.
- Su control mejora la rentabilidad y competitividad de la planta de la empresa

Optimiza del proceso productivo

- Permite identificar puntos críticos en la recepción, almacenamiento, molienda, peletizado y despacho
- Mejora de la calidad del producto
 - Evita exceso de finos, problemas de humedad y contaminación microbiana
 - Garantiza un alimento uniforme y seguro para las aves

¿Preguntas?

Wilmer Javier Pacheco, MSc., PhD. Profesor Asociado Universidad de Auburn wjp0010@auburn.edu

