

Resumen de la presentación

- 1. Introducción
- 2. Variables clave de control
- 3. Teoría del secado
- 4. Calidad de secado
- 5. Eficiencia de secado

FEED TECHNO VISION 2025

Introduccion

Introducción

¿Por qué secar?

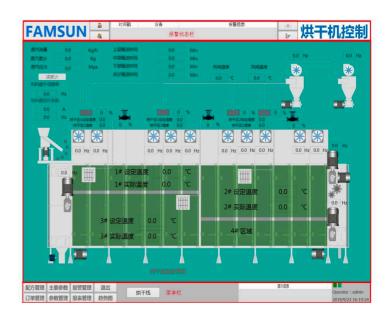
 El proceso de secado es el mayor consumidor de energía en una línea de extrusión, representando entre el 50% y el 60% del consumo total de toda la línea.

Objetivo Principal:

- Aumentar la vida útil del producto (durabilidad)
- Disminuir la actividad de agua (a_w)

Otros Objetivos:

- Cambio en la palatabilidad, por ejemplo, mayor crocancia (crujencia)
- Reducir los costos de transporte.

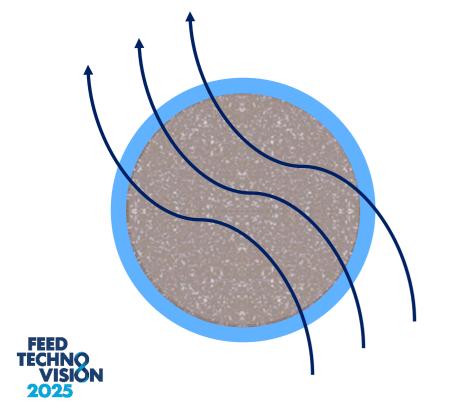


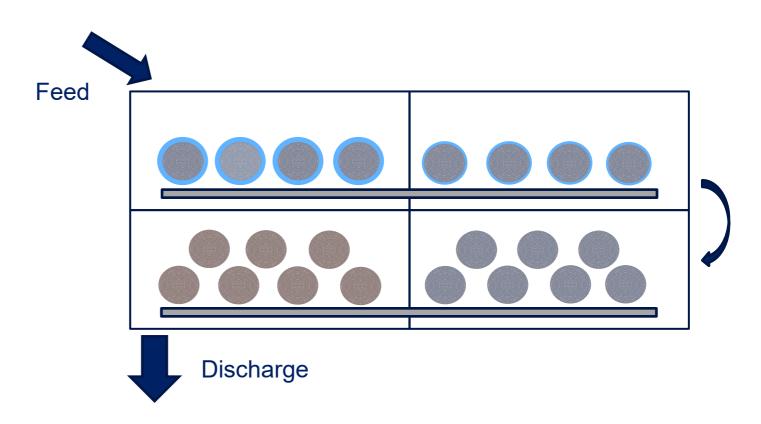
Variables clave de control del proceso

- Consistencia en la humedad del material que ingresa al secador
- Tiempo de retención
- Temperatura del aire de proceso en cada zona de secado
- Velocidad del aire a través de la cama de producto
- Volumen de aire para secado (aire fresco y de escape)
- Nivel de saturación (humedad en el aire) en la salida del secador

Estas variables, en la mayoría de los secadores, se controlan manualmente por el operador y/o mediante la automatización del proceso basada en valores de referencia.

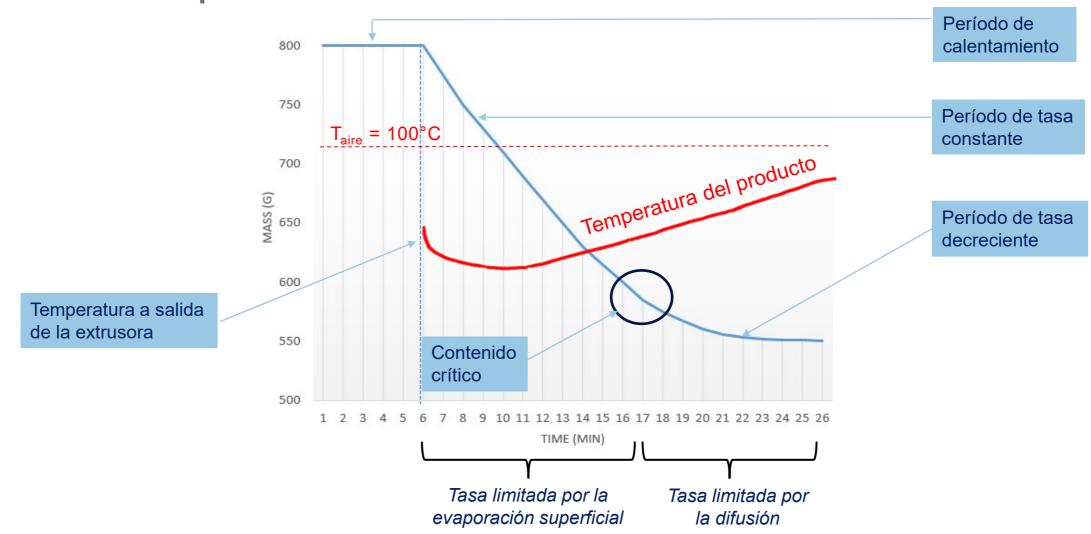
La optimización de todas estas variables es importante, pero rara vez se aplica en la práctica.



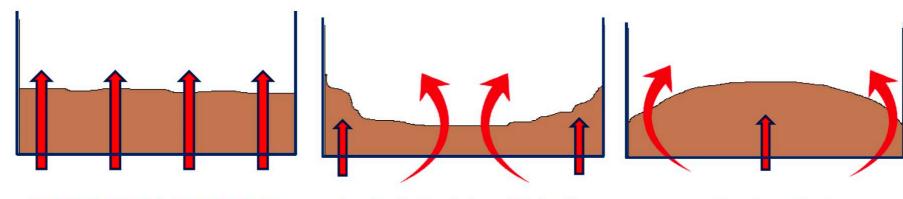

Teoría del Secado

Paso 1: El agua se evapora de la superficie del producto

Paso 2: El vapor de agua es transportado por el aire de proceso


Paso 3: La humedad interna del producto migra por difusión hasta la superficie, donde se evapora.

Curva de secado típica

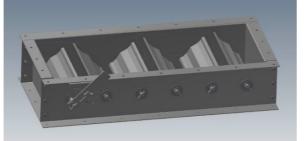


Secado homogéneo

- Placas metálicas con diversos patrones/tamaños de orificios
- Distribuidor motorizado por servomotor
- Secado uniforme con variación ≤ 0.5%.

Secador horizontal con servomotor

Secador horizontal con distribuidor mecánico


Secador vertical

Modulación del volumen de aire de escape

- El sensor de humedad proporciona datos en tiempo real al controlador para calcular el nivel óptimo de humedad, utilizando el aire de recirculación de manera inteligente para mejorar la eficiencia energética
- Reducción del consumo de energía

Secador a gas – SDZB 3000

Estable y confiable

- Diseño estructural optimizado (evita zonas muertas de flujo de aire y acumulación de polvo)
- Procedimientos de control electrónico confiables (interbloqueo de seguridad, arranque y parada con un solo toque, etc.)
- Mantenimiento y limpieza sencillos.

Diseño avanzado de estructura de sellado

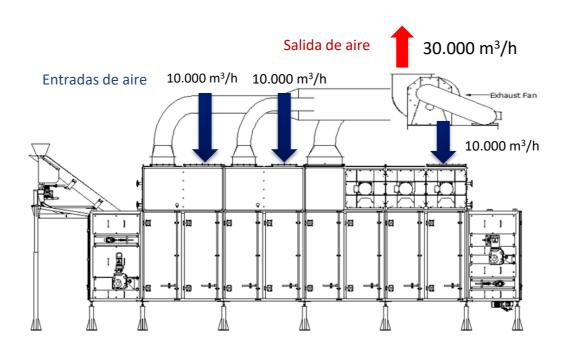
- El aire se sella a lo largo de toda la longitud de la cadena/cinta transportadora
- El espacio de sellado alcanza el nivel mínimo en la industria
- Evita la fuga de aire
- Elimina turbulencias en el secador

Uniformidad óptima de la humedad de secado

Distribución uniforme del flujo de aire

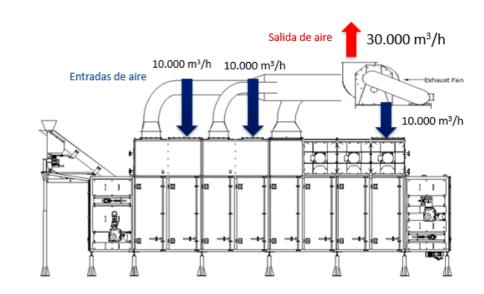
FEED TECHNO VISION

El esparcido óptimo del material garantiza la mejor uniformidad de la humedad de secado



El dilema del dimensionamiento del secador y su impacto en la eficiencia de secado

- El ventilador de escape del secador siempre se dimensiona para la carga evaporativa en el peor escenario (carga máxima)
- Cuando se opera por debajo de la capacidad de diseño del secador, es recomendable reducir el volumen de aire de escape para mantener una eficiencia de secado.

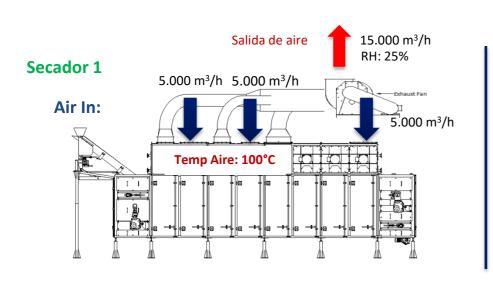


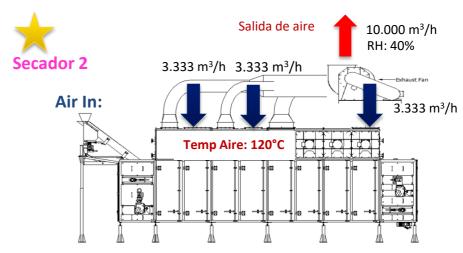
Impacto del volumen de aire de escape en la eficiencia del secado

- El principal consumidor de energía de cualquier secador es la necesidad de calentar el aire frío entrante
- El ventilador de escape regula la cantidad de aire frio que entra al secador
- Extraer cantidades excesivas de aire genera un secado ineficiente.

Volumen de aire de escape = Volumen de aire de reposición

- El volumen de aire de escape controla el volumen de aire de reposición
- Si se extraen 30.000 m³/h de aire, 30.000 m³/h de aire fresco deben ingresar al secador.





¿Cuál secador está operando con mayor eficiencia?

	Tasa Evaporac	Temp. zona	Velocidad del aire	Retención	Tasa escape	Consumo
	kg/h	С	m/s	Min	m³/h	BTU/lb
Secador 1	720	100	0.76	30	15000	1523
Secador 2	720	120	0.76	30	10000	1350

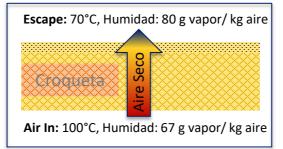
- Cuando se reduce el volumen de aire de escape, se requiere recalentar menos aire frío, lo que hace que el secador sea más eficiente
- Sin embargo, al reducir el volumen de aire de escape, el aire recirculado se satura más, lo que provoca un secado desigual
 - Para compensar esto, el aire recirculado debe ser recalentado para que pueda retener más agua. ¡Pero existe un LÍMITE!

Aire seco caliente (ejemplo superior) versus Aire húmedo (ejemplo inferior)

A. Variación de humedad:

• Escape: 41.000 m³/h

Temp aire: 100°C


• Baja variación de humedad:

	Left		Right	Min	6.12
Bottom	6.41	6.57	6.92	Max	6.92
Pass	6.64	6.12	6.47	Diff	0.80
*Whole kibble 3 hr air oven method				+/-	0.40

- Escape: 35.000 m³/h
- Temp aire: 100°C 120°C
- Alta variación de humedad:

	Left		Right	Min	5.82
Bottom	7.53	5.82	7.32	Max	7.53
Pass	7.18	6.25	6.27	Diff	1.71
*Whole kibble 3 hr air oven method					0.86

B. Estratificación de humedad

Escape: 50°C, Humidad: 96 g vapor/ kg aire

Air In: 100°C, Humidad: 80 g vapor/ kg aire

C. Capacidad de retención de agua

Temperatura (°C)	Humedad (g/kg)	HR (%)
100	53	8%
120	121	8%
135	204	8%

¡El aire a 120°C puede retener 2.3x más agua que a 100°C con la misma HR!

Sin embargo, esto puede provocar estratificación de humedad. Niveles altos de variación de humedad pueden requerir que el producto sea secado a un nivel más bajo para evitar problemas de hongos. Por lo tanto, existe un equilibrio entre operar de manera eficiente y operar con la mayor calidad y rendimiento.

El impacto de reducir el volumen de aire de escape

- Estratificación de humedad = Variación de humedad
- Variación de humedad = Sobre secado
- Sobre secado = Pérdida de rendimiento

